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ABSTRACT

Linear inversion is defined as the linear approximation of a
direct-inverse solution. This definition leads to data require-
ments and specific direct-inverse algorithms, which differ
with all current linear and nonlinear approaches, and is im-
mediately relevant for target identification and inversion in
an elastic earth. Common practice typically starts with a di-
rect forward or modeling expression and seeks to solve a for-
ward equation in an inverse sense. Attempting to solve a di-
rect forward problem in an inverse sense is not the same as
solving an inverse problem directly. Distinctions include dif-
ferences in algorithms, in the need for a priori information,
and in data requirements. The simplest and most accessible
examples are the direct-inversion tasks, derived from the in-
verse scattering series (ISS), for the removal of free-surface
and internal multiples. The ISS multiple-removal algorithms
require no subsurface information, and they are independent
of earth model type. A direct forward method solved in an in-
verse sense, for modeling and subtracting multiples, would
require accurate knowledge of every detail of the subsurface
the multiple has experienced. In addition, it requires a differ-
ent modeling and subtraction algorithm for each different
earth-model type. The ISS methods for direct removal of
multiples are not a forward problem solved in an inverse
sense. Similarly, the direct elastic inversion provided by the
ISS is not a modeling formula for PP data solved in an inverse
sense. Direct elastic inversion calls for PP, PS, SS, ... data,
for direct linear and nonlinear estimates of changes in me-
chanical properties. In practice, a judicious combination of
direct and indirect methods are called upon for effective field
data application.

INTRODUCTION

We begin with a set of definitions and a discussion of terms and
concepts used here. We illustrate how these terms are used within a
context of current and conventional seismic processing. That assists
identifying how the contribution, message, and algorithms of this
paper depart from and add to the current understanding and advance-
ment of seismic theory and practice.

In the next section, we define forward and inverse processes and
problems, define direct and indirect solutions, describe modeling as
a direct forward procedure, and introduce and define intrinsic and
circumstantial nonlinearity.

DEFINITIONS, CENTRAL ISSUES AND GOALS
OF DIRECT NONLINEAR INVERSION,
AND DISTINGUISHING INDIRECT
FULL-WAVEFORM MODEL-MATCHING
FROM DIRECT INVERSION

Forward and inverse problems

A forward problem inputs the medium properties and the source
character and outputs the wavefield everywhere inside and outside
the medium of interest. The inverse problem inputs measurements of
the wavefield outside the medium of interest and the source charac-
ter. It outputs processing goals that include locating structure/reflec-
tors at their correct spatial location and identifying the changes in the
earth’s mechanical properties across the imaged reflectors. We adopt
the inclusive definition of inversion, which accommodates (1) the
determination of subsurface properties, e.g., structure and medium
properties, and (2) intermediate inversion goals associated with pro-
cessing tasks (like multiple removal) that facilitate subsequent deter-
mination of structure and medium properties.
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Direct and indirect methods

Methods for achieving these forward and inverse goals are classi-
fied as direct or indirect. Modeling methods are typically direct: they
input medium properties and output the wavefield directly. Inverse
methods that input seismic recorded data and output medium proper-
ties, or other seismic-processing objectives, straight away and di-
rectly are direct inverse methods. Indirect seismic inversion or pro-
cessing methods do not output medium properties or seismic pro-
cessing objectives directly. Instead, they seek and search, locally and
globally, and consider possible candidates that emulate a character-
istic, property or invariance that a direct solution would automatical-
ly satisfy (e.g., Tarantola, 1990; Stoffa and Sen, 1991; Pratt, 1999;
Sirgue and Pratt, 2004; Landa et al., 2006; Vigh and Starr, 2008, and
references therein). Through the satisfaction of that property, indi-
rect methods seek a solution.

Direct modeling methods

There are many direct methods that model and generate seismic
data. Modeling methods include (1) finite difference, (2) finite ele-
ment, (3) reflectivity, (4) Cagniard-De Hoop, (5) lattice Boltzmann,
and (6) the forward-scattering series. Another example of modeling
is given by the Zoeppritz equations. The Zoeppritz equations model
elastic plane-wave reflection and transmission coefficients, and pro-
vide closed-form expressions that input changes in mechanical
properties across a horizontal boundary, the incident plane-wave an-
gle, and the type of incident wave to predict, directly and nonlin-
early, the various elastic reflection and transmission coefficients of
waves that are generated by the incident plane wave and that ema-
nate from the boundary. All of these modeling methods input medi-
um properties and directly output the wavefield. They are direct
modeling methods.

Defining intrinsic and circumstantial nonlinearity and
their roles in direct inversion theory

Certain forward and inverse processes commonly are recognized
as inherently nonlinear. The most well known are the Zoeppritz rela-
tionships between the changes in mechanical properties across a hor-
izontal interface between two elastic half-spaces and the reflection
and transmission coefficients given by the Zoeppritz equations.
Zoeppritzis aforward direct and closed-form nonlinear relationship,
and it is the archetypical intrinsic or innate nonlinearity. Intrinsic (or
innate) means that only detailed accurate information everywhere in
the subsurface can avoid that nonlinearity. The forward nonlinearity
implies an inverse nonlinearity. From an inverse point of view, the
only way to avoid that Zoeppritz type of nonlinearity is to know the
entire subsurface. If one is interested in determining the mechanical
properties in any region of the subsurface that initially is unknown,
then one is facing intrinsic nonlinearity. If we assume, e.g., complete
knowledge of all medium properties (not only velocity) down to a
given reflector, and what is beneath that reflector is unknown, then
we are facing the nonlinear inverse of inverting the nonlinear for-
ward Zoeppritz equations and/or their multidimensional generaliza-
tion for property changes across that reflector.
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Processes that are sometimes linear or nonlinear,
circumstantial nonlinearity, removing multiples, and
depth imaging primaries

There are other forward and inverse processes that are commonly,
reasonably, and correctly considered as linear. For example, (1)
depth imaging for structure with an accurate velocity model and (2)
modeling and subtracting water-bottom multiples are linear meth-
ods for migration and multiple removal, respectively. Each case re-
quires a priori information but not for the entire subsurface — only
enough a priori information to achieve the stated goal. In circum-
stances where relevant and accurate a priori information is unavail-
able or inadequate to achieve the two above-mentioned goals (di-
rectly depth imaging with an accurate velocity model and modeling
and subtracting multiples), the inverse scattering series (ISS) offers
the opportunity to achieve each of these two goals (which are linear-
ly achievable with a priori information) directly and nonlinearly in
terms of the data and without a priori information. We define that
type of nonlinearity as circumstantial nonlinearity.

Third type of nonlinearity: the combination of
intrinsic and circumstantial

There is a third kind of nonlinearity that is a combination of the in-
trinsic and circumstantial types. The third kind of nonlinearity can
take place in, e.g., a situation where the goal is to determine the loca-
tion and changes in mechanical properties across a specific reflector
and there is an unknown overburden above that reflector. The latter
goal also is within the promise and purview of the inverse scattering
series. It is directly achievable in terms of nonlinear relationships of
the data, without knowing, needing, or determining overburden in-
formation.

The ISS is the only method that can directly invert and address ei-
ther the intrinsic or the circumstantial nonlinearity, when they occur
separately, let alone accommodate this nonlinearity when they occur
simultaneously, i.e., together and in combination. An example of a
combined (type-three nonlinearity) is the direct target identification
beneath an unknown overburden. Target identification is intrinsical-
ly nonlinear by itself and the unknown overburden adds circumstan-
tial nonlinearity to the mix.

The ISS is the only multidimensional direct inversion for acoustic
or elastic media. However, it took that general ISS machinery to pro-
vide the first direct inverse solution to the simplest and archetypical
single-interface intrinsic nonlinear forward problem, defined by the
forward Zoeppritz equations. The ISS provides an order-by-order
(in terms of data) solution for inverting that type of plane-wave re-
flection data to determine the changes in mechanical properties
across a specific reflector. What reflection data are required as input
to allow this first direct solution to provide the changes in mechani-
cal properties across that single interface?

The message from the only direct inverse method is that PP data
are fundamentally insufficient for direct linear or nonlinear inver-
sion, and that all components PP, PS, SS, ...are required before one
gets started. The direct order-by-order solution for any one or all
changes in mechanical properties across that single reflector, explic-
itly call upon all those independent data components. That message
is itself at variance with the extensive published literature on target
identification, elastic parameter estimation, amplitude variation
with offset (AVO), full-waveform inversion, iterative linear inver-
sion, global and local search engines, optimization schemes, model
matching, common-image-gather flatness, and optimal trajectory
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stacking, i.e., “path integral” — essentially all current seismic prac-
tice and theory. The only direct inversion method has a definitive
statement on how (for the first time) to directly compute linear and
higher-order terms for the changes in mechanical properties.

Perhaps it should come as no surprise that this direct solution has a
view that is different and at odds with every manner of indirect think-
ing and algorithm. The divergence between direct and indirect think-
ing and algorithms is immediate, significant, and substantive for the
case of elastic target identification and inversion, and methods that
depend on those results. In the elastic case, direct inversion commu-
nicates unambiguously and clearly that indirect inversion methods
today are using wrong and fundamentally insufficient data. Indirect
methods on their own have no way of recognizing it.

Given the choice between the direct and definitive solution of the
equation x + 1 = 2, found by subtracting 1 from both sides of the
equation, and indirect searching for numbers that make some
weighted integrated measure of the difference between x + 1 and 2
small, which one would we trust, and have confidence in, as a meth-
odology and framework?

When is an inverse problem (or processing goal) the
direct forward problem run backward?

In cases where a specific inverse task is directly and exactly
achievable in a linear manner with adequate a priori information (for
example, determining the spatial location of reflectors given an ac-
curate velocity model, or modeling and removing water-bottom
multiples), then modeling with a priori information is essential to
achieve the inverse task. It is only under that type of circumstance
that a link between the direct modeling and direct inverse exists.
These two linear-inverse-task examples are derivable starting from
the wave equation, wave propagation and imaging methods, or wave
modeling and subtraction methods, respectively.

When is an inverse problem (or processing goal) not
the direct forward problem solved in an inverse sense?

For any nonlinear inverse problem (whether intrinsic, circum-
stantial or a combination) the direct forward problem solved in an in-
verse sense and the direct solution of the inverse problem are not
equal. Removing multiples without a priori information is achiev-
able with a direct-inversion ISS subseries, but removing multiples
with direct forward modeling and subtraction requires all a priori in-
formation that relates to the subsurface experience of the multiples.
Solving a forward problem in an inverse sense for changes in me-
chanical properties would imply PP data are necessary and suffi-
cient, but solving the direct elastic inverse problem for changes in
mechanical properties requires all PP, PS, SS, and SP components as
necessary and sufficient data for linear and higher-order direct inver-
sion estimates.

An amazing and fortuitous property concerning how
the ISS addresses circumstantial nonlinearity

An additional intriguing and amazing fact concerns a shared prop-
erty of all inverse scattering subseries that address circumstantial
nonlinearity. ISS subseries that address any circumstantial nonlin-
earity always determine first if their services are called for in any
given data set, and if so, where within the data, and to what extent
and degree their assistance is needed. As a reminder, a circumstantial
nonlinearity represents a lack of available or adequate a priori infor-
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mation. It becomes a linear problem when adequate a priori informa-
tion is available. Depth imaging is a linear problem with a weighted
sum over data (i.e., linear in data) given the availability of an ade-
quate velocity model. The first term in the imaging subseries is the
conventional linear-imaging result, which would be the depth-imag-
ing answer if a priori velocity information and a concomitant linear-
imaging algorithm were both adequate. The second term in the imag-
ing subseries (the first beyond linear) determines inside its integrand
if the a priori information and concomitant images are adequate. If
so, the integrand is zero and it signals to the rest of the imaging sub-
series that there is nothing for them to do with this particular data set.
Subseries that address circumstantial nonlinearity (whether for
depth imaging or removing internal multiples) decide first from the
data if there is a need for their services. They go into action only if
they decide they are needed. That is called purposeful perturbation
theory — a consequence of the intelligence and purposefulness of
direct inversion. With this as a background and motivation, we re-
view the ISS briefly, providing the basis and justification for the
statements made in this introduction, and move toward our specific
message and goal.

The content that follows will be in two major sections. First, we
review the inverse scattering series and provide the framework for
the issues we address here. Then, we describe our subsequent think-
ing and issues that relate to (1) the distinction between solving a di-
rect forward algorithm in an inverse sense and a direct inverse, (2)
how the direct inverse solution stands alone in providing the clarity
of explicit solutions and the data those direct inverse solutions de-
mand, and (3) the meaning of linear inverse as linear approximation
in the data and that linear inverse actually corresponds to the first and
linear estimate of a nonapproximate and nonlinear direct inverse so-
lution.

Next, we describe that thinking as it actually occurred and
evolved in our research and discussions. We also describe the appar-
ent obstacles in logical consistency and their resolution on the road
that the authors traveled which culminated in our message here. We
recognize that this section is not typical for scientific reporting, but
the reader might appreciate and hopefully benefit from our steps
along the path and from our deliberations that eventually arrived at
that thinking, rather than a simple delivery of the conclusions.

INVERSE SCATTERING SERIES: THE ONLY
DIRECT AND NONLINEAR INVERSION
FOR A MULTIDIMENSIONAL SUBSURFACE

Asnoted above, there are many direct forward or modeling meth-
ods. However, the ISS is the only direct inversion method for a mul-
tidimensional acoustic, elastic, or anelastic earth.

The ISS can accommodate both the intrinsic and the circumstan-
tial nonlinearity, separately and in combination. The nonlinearities
are accommodated directly in terms of data, without the need in prin-
ciple or practice to determine or estimate actual properties that gov-
ern wave propagation in the subsurface. The inverse series is the
only inverse method with the capability of directly addressing and
inverting either type of nonlinearity. Itis also unique in its communi-
cation that, starting from one single set of ISS equations, (1) all pro-
cessing goals and objectives can be achieved in the same essential
template and manner, with distinct isolated-task inverse scattering
subseries for each processing goal; and (2) with the same use of the
amplitude and phase of seismic data directly and without subsurface
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information (as free-surface multiples are removed). These qualities
and properties are unique to the ISS.

The ISS (Weglein et al., 2003, Weglein et al., 1997 and references
therein) has the following characteristics:

1) Itcontains the capability to achieve all major processing objec-
tives: free-surface multiple removal, internal multiple removal,
depth imaging, Q compensation, and direct nonlinear target
identification. All objectives are achievable directly in terms of
measured data without a need to know, determine, or even to es-
timate approximately any information related to subsurface
properties that govern the propagation of waves in the actual
subsurface. In contrast, this information is required by conven-
tional linear migration and migration-inversion methods to lo-
cate and identify targets.

2)  Within the inverse scattering series, distinct direct algorithms
input the data and output each of the processing objectives list-
ed in item (1) through the introduction of the isolated-task sub-
series concept.

3) Among the tasks listed above: the first and second are each
achievable by a distinct earth-model-type independent algo-
rithm, without a single line of code that changes for an acoustic,
elastic, heterogeneous, anisotropic, or anelastic earth.

4)  For the removal of free-surface and internal multiples, the in-
verse series performs those distinct inverse tasks without divid-
ing any quantity or inverting any matrix. These two multiple-
removal tasks involve only multiplying data times data, which
accounts for their robustness and stability.

For tasks that go beyond multiple removal (e.g., depth imaging,
nonlinear direct AVO, and Q compensation) the inverse step is al-
ways the same. In the marine case, this step is only in terms of water-
speed whole-space Green’s functions; it is provided by a single wa-
ter-speed FK-Stolt migration, and involves a single, unchanged, an-
alytic algebraic division in the Fourier domain for each term in the
inverse series. No need exists for a generalized inverse, model
matching, indirect approaches or proxies for subsurface informa-
tion, searches (local or global), downward continuation and strip-
ping, or background updating schemes with their well-documented
issues and pitfalls of low-frequency data demands and often inade-
quate earth-model types.

SCATTERING THEORY, THE FORWARD OR
MODELING SERIES, AND THE INVERSE
SCATTERING SERIES

Scattering theory is a perturbation theory. It provides the exact
manner in which alterations (perturbations) in any and/or all medi-
um properties relate to the concomitant change (perturbation) in the
wavefield that experiences the altered (perturbed) medium. We map
the language of scattering theory to the purposes of seismic explora-
tion by considering the actual earth properties as consisting of a ref-
erence medium (chosen by us) plus a perturbation of the reference
medium, where the combination of reference and perturbation corre-
spond to the actual subsurface. Scattering theory then relates the per-
turbation (the difference between the reference and actual medium
properties) to the scattered wavefield (the difference between the
reference and actual medium wavefields). We begin with the basic
wave equations governing wave propagation in the actual medium,

Wegleinetal.

LG =6, (1)
and in the reference medium,
L()GO = 5 N (2)

where L and L, are differential operators that describe wave propa-
gation in the actual and reference media, respectively, and G and G,
are the corresponding Green’s operators. The & on the right side of
both equations is a Dirac delta operator and represents an impulsive
source. Throughout this paper, quantities with subscript “0” are for
the reference medium, and those without the subscript are for the ac-
tual medium.

Following closely Weglein et al. (1997), Weglein et al. (2002),
and Weglein et al. (2003), we define the perturbation V= L, — L.
The Lippmann-Schwinger equation

is an operator identity relating G, Go, and V (see, e.g., Taylor, 1972).
Iterating this equation back into itself generates the forward-scatter-
ing series

G= GO + G()VG() + G()VG()VGO + o (4)
Then the scattered field ¢y, = G — G, can be written as
Y= GoVGy+ GoVGVGy + - = ()1 + () + -,
(5)

where (i,), is the portion of ¢, that is n'" orderin V.

Modeling methods, such as finite differences and finite element,
generate the wavefield directly with input in terms of actual medium
properties. Forward-scattering theory also models data with the ac-
tual medium properties but being a perturbation theory, the pre-
scribed medium properties are separated into L, and V. The actual
wavefield G is provided in terms of L, where L = L, — V, L, enters
through Gy, and V enters as V. The expansion of G — G in orders of
Vis unique and is a generalized Taylor (really geometric) series with
first term a = G, and the rate r = VG,,. This forward-scattering or
forward-modeling equation communicates that any change in medi-
um properties between L, and L, characterized by perturbation oper-
ator V, will lead to a change in the wavefield that is always related
nonlinearly to V. Any change in medium properties at a single point,
throughout a region, on a surface, or everywhere in space, or a
change of medium properties of whatever magnitude at any single
point will instigate this nonlinear response.

This forward-scattering relationship is the complete and multidi-
mensional extension and generalization of the Zoeppritz relations
where any change in any mechanical property across a single reflec-
tor produces reflection coefficients that are related nonlinearly to
(and generated by) the change in mechanical property. The forward
nonlinear relationship between the scattered field G — G, and the
medium perturbation V implies a nonlinear relationship in the oppo-
site direction of V nonlinearly related to the scattered wavefield. The
latter supposition is supported by the simple geometric series analog
forG— Gy=S=ar/(1 —r)andthenr = S/(S + a) and a series in
S/a. The inversion problem relates data (or measured values of G
— G,) to Vand leads to the ISS. Terms in the inverse series are an ex-
pansion of V in orders of the measured data and a generalization of
aninverse geometric series — and each term in that nonlinear expan-
sion is unique. Now, we will show that substituting this inverse se-
ries form into the forward series provides an equation for each order
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of V’s expansion V, that provides a unique and exact solution for that
order of contribution to V. The measured values of ¢ are the data D,
where

D = (ws)ms’ (6)

in which ms represents “on the measurement surface.” In the ISS,
expanding V as a series in orders of D,

V=V, +Vy+ Vi+ -, (7)

then substituting equation 7 into equation 5 and evaluating equation
5 on the measurement surface yields

D =[Gy(Vi+ Vo + - )Gplys + [Go(Vy + Vo + -+ )Go(V,
+V2+ .“)GO:lms—’— (8)

Setting terms that have equal order in the data equal leads to the
equations that determine V,, V... . directly from D and G;:

D= [GOVI GO]ms’ (9)

0= [GOVZGO]ms + [GOVI GOVI G()]ms’ (10)
and
0 =[GoV3Golus + [GoViGyV2Go s + [GoV2Go VGl
+[GoV1GoV1GV Gl s (11)

Equations 9—11 permit the sequential calculation of V,, V,,..., and,
hence, achieve full inversion for V (see equation 7) from the record-
ed data D and the reference wavefield (i.e., the Green’s operator of
the reference medium) G,. Therefore, the ISS is a multidimensional
inversion procedure that directly determines physical properties us-
ing only reflection data and reference medium information. The ref-
erence medium is often chosen as water in the marine case.

If the subsurface medium properties V can be determined directly
from data and water speed, then all intermediate steps toward that
goal (e.g., removing free-surface and internal multiples, depth imag-
ing, nonlinear direct AVO, and Q compensation) each can be
achieved directly and nonlinearly in terms of data and a single, un-
changed reference medium of water. Earlier in this paper, we defined
different types of nonlinearity: (1) intrinsic, (2) circumstantial, and
(3) the combination. The ISS, in producing changes in medium prop-
erties Vfrom reflection data G — Gy, is directly and uniquely provid-
ing the order-by-order solution to the intrinsic nonlinearity, which
we associate with inverting the Zoeppritz equations and multidi-
mensional target-identification generalizations. Furthermore, be-
cause all objectives and tasks associated with inversion are achieved
using the ISS directly in terms of data and water speed without a pri-
ori information, then issues involving circumstantial nonlinearity
also are contained as distinct task-specific subseries of the ISS. The
ISS is direct and nonlinear; it is the most comprehensive data-driven
machine.

For our purposes here, the absolutely critical point to recognize at
this juncture is that the equations for V,, V... .. are exact equations for
Vi, Va,..., where V|, V,,... are linear and quadratic estimates for V,
respectively...but the equations for V, V,,. .. are the exact equations
for the latter quantities. That the equations for V,, V,,. .. are each ex-
act for those quantities is a rigorous mathematical result derived
from the theorem that equal orders in a parameter (data) are equal on
both sides of an equation.
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Below, we present the progression of thinking that led to the mes-
sage and conclusions of this paper, starting with the simpler acoustic
case as a warm-up and training exercise, and progressing to the elas-
tic world where the situation is more complicated and the conse-
quences are significant and substantive.

ACOUSTIC CASE

We begin to examine issues that relate to necessary and sufficient
data requirements for direct linear and nonlinear inversion algo-
rithms in the relatively simple acoustic world. In this section, we will
consider a 1D acoustic two-parameter earth model (e.g., bulk modu-
lus and density or velocity and density). We start with the 3D acous-
tic wave equations in the actual and reference media:

2
[ Y 4 V'LV]G(r,rs;w)=5(r—l‘s) (12)
p(r)

K(r)
and
W’ 1
{Ko(r) + V~mV}GO(r,rs;w) =6(r—ry), (13)

where G(r,r;;w) and G(r,r,;w) are the free-space causal Green’s
functions describing wave propagation in the actual and reference
media, respectively. The P-wave bulk modulus is K = ¢?p, ¢ is
P-wave velocity, and p is the density. We assume both p, and ¢, are
constants. For the simple 1D case, the perturbation V has the follow-
ing form:

w’alz) 1 3% J d
V(z,V)=—=+ —B()— + ——B)—,
(z,V) X, poﬁ(z) FrERE, az’B(Z) Py

(14)

where &« = 1 — Ky/K and B = 1 — py/ p are the two parameters we
choose to perform the inversion.

Similar to equation 7, expanding V, «, and 8 in different orders of
data and assuming the source and receiver depths are zero, we can
determine the linear solution for «; and 3, in the frequency domain
(Zhang, 2006):

D(z,0) = — %(@al@ + (1 — tan? e)ﬁl(Z)),

(15)

where D(z,0) is a shot record D(x,?) that is first Fourier-transformed
overx and 7 to D(k,,w). Next, we perform a change of variables from
temporal frequency to vertical wave number as D( —2¢,,6) with g,
=((w/cy)*— k;)”2 andtan 6 = k,/q,, and finally it is inverse-trans-
formed from —2g, to z to get D(z,6). Please see equation 3.11 in
Zhang (2006) for further details.

Let us consider the following logic. Equation 15 is an exact equa-
tion for the linear estimates a(z) and B,(z). Choosing two (or more)
values of § will represent the means to solve equation 15 for «,(z)
and B,(z).

For a single-reflector model, the left side of equation 15 is the mi-
gration of the surface-recorded data. The migration provides a step
function at the depth of the reflector whose angle-dependent ampli-
tude is the reflector’s angle-dependent reflection coefficient.
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The right side of equation 15 can be rewritten as
p
= @@+ B1(2) + (1) = Bi(2)tan’ 0). (16)

Separately, we know that the exact plane-wave reflection coeffi-
cientis (e.g., Keys, 1989)

(p1/po)(ci/co)V1 — sin® 6 — V1 — (c%/cﬁ)sin2 0
(p1/po)(cy/eg)N1 — sin® 6 + V1 — (ci/cd)sin’ 0
(17)

We can find a Taylor series in R as a function of sin? 6 or another Tay-
lor series using

R(0) =

tan® 6
-2
0=—"—""7—. 18
st 1 +tan> @ (18)
This series is
R(6) = R(tan? 6) = R(tan> 6 = 0)
dR(tan® 6
<¥> .tan2 0
d(tan 0) tan2 =0
(dRz(tan2 6’)) tan* 0
d(tan2 0)2 tan2 =0 2
(19)

Equation 19 is exact, and the amplitude of the step-function in equa-
tion 16 (after dropping the z-dependence) is

R(tan®> §) = a; + B, + (a; — B )tan> 6. (20)

The first term in the ISS is an exact equation for the linear estimates
a;and B, of a and B, respectively.

Reconciling the exactness of equation 20 with the
exactness of equation 19

Equation 20 would seem to represent a truncated, and therefore,
approximate form of the Zoeppritz exact reflection coefficient
(equation 19).

From the derivation of the inverse scattering series, equation 20 is
not an approximation, but the exact equation for the linear estimates
a; and B,. On the other hand, equation 19 is the Zoeppritz equation
and represents an indisputable cornerstone of elastic wave theory.
The required consistency between equation 19 and 20 demands that
a; and B, be functions of 6.

Let us see where that supposition then takes us from equation 20,
which can be rewritten as:

R(tan® 0) = a(0) + B,(0) + [«,(8) — B,(6)]tan> 6.
(21)

If two values of € are chosen, say 6, and 6,, then equation 21 will
lead to two equations with four unknowns, «,(6,), a,(6,), 8,(6,),
and B3,(6,). That is not good news. The problem here is that we have
forgotten the basic meaning and starting point in defining «, 8 and
ag, B

In adirect determination of a parameter from the ISS expansion in
orders of the data, it is a critically important first step to ensure that
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the data (in terms of which a specific parameter is being expanded)
are sufficient to determine that parameter. The data needed to deter-
mine a parameter are dependent upon what other parameters are (or
are not) in the model. In other words, the required data is specified
with the context in which that parameter resides (acoustic, elastic,
and so forth).

Now consider a two-parameter world defined by «(z) and B(z),
and the expansions of & and B in orders of the data. In this case, if we
suppose that e and B3 are expandable in terms of data at two different
plane-wave angles, assuming that such a relationship between
D(z,0,), D(z,0,) and « and B exists and is sufficient to determine «
and B (not «; and B3), then we can write the series for a(z) and B(z)
as

a(Z) = al(Z’D(Zval)aD(Z’92)) + aZ(ZaD(Z’9])7D(Z’ 02))
. (22)
In a compact notation,
a(Z):al(Z,61,62)+aZ(Z’01,02)+ T, (23)

where « is the portion of « linear in the data set (D(z,0,),D(z,6,)).
Similarly,

B(z) = B1(2,0,,0,) + B2(2,0,,6,) + ---. (24)

If the model allowed only bulk modulus changes but not density
variation, then the data required to solve for & would consist only of
data at a single angle and in that single-parameter world,

a(z) = a;(z,0)) + ay(z.6,) + ... (25)

Now in the two-parameter inverse problem, the data are

D(Z,91)>
(D(Z,ﬁz) (26)

and then D = G,V,G,is equal to

(D(z,61)> - ((1 +tan? 6,) (1 — tan? eg)
D(z,0,)) \(1 +tan®6,) (1 — tan®6,)

al(Z’91,92)>
X<ﬁl(z’01?02) (27)

and (gll((‘;llgf))) is related linearly to (gfgf;) The values of a; and 3,

will depend on which particular angles 6, and 6, were chosen, and
that is anticipated and perfectly reasonable, because being a linear
approximation in the data could (and should) be a different linear es-
timate depending on the data subset that is considered.

Equation 27 (a matrix equation) is the first term in the inverse se-
ries and determines «; and B, the linear estimate of a and 3.

The key point

The lesson here is that the inverse problem does not start with
GyV,Gy= D, but with V=1V, + V, + V5 + ... and the latter equa-
tion is driven by a view of which data set can determine the operator
V.

This might seem like a somewhat useless academic exercise be-
cause equation 27 is the equation one would have solved for «; and
B if their 6 dependence is ignored entirely. However, it is anything
but academic. There are at least two problems with that conclusion.
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The above analysis is valuable because (1) with «; and 3, indepen-
dent of €, we have difficulty in claiming or satisfying the important
requirement that the first equation in the inverse series is exact, and
(2) more importantly, we can get into serious conceptual and practi-
cal problems in the elastic case if we do not have a very clear grasp of
the underlying inverse issues and relationships in the acoustic case.

ELASTIC CASE

The scattering theory and the ISS for the 1D isotropic elastic earth
are developed in Zhang and Weglein (2009a). We refer the reader to
that paper (in this issue) for details of the elastic direct inverse and, in
particular, for transforming the scattering equations from displace-
ment to their PS representation.

In the displacement space

In the following, we start the inversion problem in two dimen-
sions. The 2D elastic wave equation is (A. B. Weglein and R. H.
Stolt, personal communication, 1992)

10
Lu={pw2< )
0 1

+< d1ydy + drpudy
Iy = 2p)dy + 1195

x{”l} —1, (28)

where u =[ ;'] = displacement, p = density, y = bulk modulus
(=pa? where a = P-wave velocity), u = shear modulus (= p32
where 8 = S-wave velocity), w = temporal frequency (angular), d,
and d, denote the derivative with respect to x and z, respectively, and
fis the source term.

For constant (p,y,1) = (po,Yo.t0), (. 8) = (ao,B), the opera-
tor L becomes

10 8%+ wod
LOE[PO‘”Z( >+< Y001 T Mooz
01 (Yo — o319,

Iy = 2p)d5 + drpd, ):|
dpydy + 1,

(Y0 = 10)919; )1
podi + vod3 /]
(29)

Then for a 1D earth, defining a,=p/py— 1, a,=7y/yy— 1 and

a,= u/ uy — 1 as the three parameters we choose for the elastic in-
version, the perturbation V = L, — L can be written as

a,,wz + a%ay&f + Bgﬁza#ﬁz
V==po

(agay - 2[35“#)’7152 + 3592“,&71 :|
ay(aga, —2B3a,)d, + Biad

a,0* + agdra,dy + Bia,d]
(30)
For convenience (e.g., A. B. Weglein and R. H. Stolt, personal
communication, 1992; Aki and Richards, 2002), we change the basis

and transform the equations in the displacement domain to PS space,
and finally, we do the elastic inversion in the PS domain.

Linear inversion of a 1D elastic medium in PS space

The equation for the first term in the ISS D = G,V G, in the dis-
placement domain can be written as the following form in the PS do-
main:

WCD7

b o\ (e oo\ s\ (e o
b b)) \oogs)\ur )\ o ¢
(3D
This leads to four equations:
DP? = GEVEPGP, (32)
D™ = GEVISGS, (33)
DS = GyVi*GY, (34)
and
DSS = GSV3SGs. (35)

For the P-wave incidence case (see Figure 1), assuming z, = z,
= O andin the (k,,z,;k,.z,;w) domain, the solution of equation 32 can
be written as

~ 1 1
DP(v,0) = — (1 - tan? 0)a.(—2v,) — e

282 sin? 0
+ tan® 0)57(;)(— 2v,) + BO—Z
@
~1)
xXa,'(—2v,), (36)

where we used &}/ v, = tan? 6 and k,/ (v} + k) = sin? 6, and 6 is
the P-wave incident angle.

In the earlier section on acoustic inversion, B, and 3, refer to rel-
ative changes in density, whereas in this elastic section 3, and 3,
refer to relative change in shear-wave velocity. For the elastic inver-
sion, in the special case when B, = 8, = 0, equation 36 reduces to
the acoustic two-parameter case equation 7 in Zhang and Weglein
(2005) forz, = z, = 0:

Incident P-wave RSP

RPP

OLOI BOIpO
OL7, B1lp1

TPP

Figure 1. Response of incident compressional wave on a planar elas-
tic interface. a, B¢, and p, are the compressional wave velocity,
shear-wave velocity and density of the upper layer, respectively; a;,
B1, and p, denote the compressional wave velocity, shear wave ve-
locity, and density of the lower layer. The coefficients of the reflected
compressional wave, reflected sheer wave, transmitted compres-
sional wave, and transmitted shear wave are denoted by R, RSP, T%F,
and 757, respectively (Foster et al., 1997).
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= Po I 2
D(q,.0) = — Z{mal(— 2g,) + (1 — tan” 6)
XEI(—qu)} (37)

Direct nonlinear inversion of 1D elastic medium in PS
space

The equation for the second term in the ISS G,V,G,=
— GyV1G,V,Gy in the displacement domain can be written in the PS
domain as

6 o \(vr w\(er o) (e o
o g\ o\ a)” o g

RN TE
>< b
R AC I AV AT
(38)

which leads to the four equations

APY,PPAP _ APY/PP APYVPP AP _ APY/PS ASY,SP AP
GoVy Gy = — GV GOVT Gy — Gy Vi"GoVy Gy,

(39)
GEVESGS = — GEVIPGEVESGS — GEVASGSVSSGS,

(40)
GV Gl = — GaVY* GoVIT Gl — GV GV G,

(41)

and

GVSSGS = — GRTPGLITSGS — GRS GG,

(42)

Because V‘f" relates to DPP , st relates to ﬁps, and so on, the four
components of the data will be coupled in the nonlinear elastic inver-
sion. Therefore, we cannot perform the direct nonlinear inversion
without knowing all components of the data. Equations 31-42 repre-
sent the necessary and sufficient data requirements for the linear and
higher-order direct inversion for any one of the elastic mechanical
property changes. Each of the linear and higher-order terms is the
unique expansion of that mechanical property in terms of a data that
caninvert directly for those quantities.
The three parameters we seek to determine are

* a,—relative change in bulk modulus
* a,—relative change in density
* a,—relative change in shear modulus

These parameters are to be expanded as a series in the data. Which
data?

The answer is once again the data needed to directly determine
those three quantities.

The thesis of Zhang (2006) demonstrates for the first time not only
an explicit and direct set of equations for improving upon linear esti-
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mates of the changes in those elastic properties, but also perhaps
equally and even more importantly, the absolutely clear data require-
ments for determining a,, a,, and a,,.

The data requirements are

D= (43)

for a 2D earth and generalize to a 3 X 3 matrix for a 3D earth with SH
and SV shear waves.

The 2D message is delivered in equation 38 (or equations 39-42)
that the first nonlinear contribution to a,, a,, and a, requires that
data; and hence, the exact determination of those elastic quantities
also requires that data set (Weglein, 2009):

VPP PS B Vll’P V11>S VZPP V12>s
VSP VSS - V?P V?S + V;P Vgs +

The logic is as follows:

(44)

requires

because

Nad

TOTRRD
SFB

requires

Hence

=

must mean linear in
DAPP [)PS
DASP bss

i.e., linear in the data needed to determine

Inverting
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D = GEVAPGP (45)

alone for a(y‘), a(M] ) and a;f), although mathematically achievable, cor-
responds to a linear approximate forward problem for PP data solved
in an “inverse sense.” The direct inversion of the elastic heteroge-
neous wave equation defines the data needed to invert for those
quantities, in principle. A linear inversion is a first and linear approx-
imate term in a series solution that inverts data directly from the elas-
tic wave equation for changes in earth’s mechanical properties.

That definitive, linear inverse definition requires the linear ap-
proximation to be linear in the collection of data components. In the
simpler case of acoustics, and inverting the heterogeneous acoustic
equation directly for changes in acoustic properties, the direct in-
verse solution (Zhang, 2006) provided by the ISS, is a series in the
measured pressure wavefield, and the linear acoustic inverse is lin-
ear in the collection of measurements of the pressure wavefield
needed to solve the direct inverse. But the linear inverse in the elastic
case is linear in all of the data components, because the direct elastic
inversion is an expansion in all data components.

Solving fora!,a!!’, and ! from DPP alone is a model matching of
PP data and something less than a linear inverse.

The ISS and task-specific subseries first need to treat the linear
term with respect and then the higher-order terms can carry out their
purpose.

If the linear estimate is not calculated correctly, the ISS cannot re-
cover or compensate — it wants the linear estimate to be the linear
estimate, and never expects it to be exact or close to exact, but it nev-
erexpects it to be less than linear. Let linear be linear.

The power and promise of the ISS derives from its deliberate, di-
rect, physically consistent, and explicit nature. It recognizes that
when there is any perturbation in a medium, the associated perturba-
tion in the wavefield always is related nonlinearly to that change.

The inverse implies that the medium perturbation itself is related
nonlinearly to the perturbation in the wavefield. Thus, the medium-
property perturbation operator is related nonlinearly to the change in
the wavefield on the measurement surface, i.e., to the measured data.

We assume the scattered field and the perturbation can be expand-
ed in orders of the medium perturbation V and the measured data D,
respectively:

lps = (¢s)1 + (l//s)Z + (l//s)3 + .. (46)

and
V:V1+V2+V3+"', (47)

where (i,), is the portion of ¢, which is the nth order in V and where
V, is the portion of V which is the nth order in the data D, i.e., the
measured values of ¢,. The entire foundation behind the ISS is based
on equations 46 and 47, expressing the indisputable nonlinear rela-
tionship between changes in medium properties and the concomitant
changes in wavefields. This is all that needs to be assumed. These
equations simply communicate the identity known as the Lippmann-
Schwinger equation, which governs perturbation theory, and its for-
ward, nonlinear modeling series and nonlinear inverse-series forms.

Beyond that point, the process and procedure for determining
V1,V,,Vs,... is out of our hands and away from our control. How to
find V| from D is prescribed and what to do with V; to determine V, is
prescribed also. That nonlinear explicit and direct nature, and the
steps to determine those terms V,V,,V;,... are not decision-making
opportunities. If we decide what to do with V, rather than have the
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nonlinear relationship between data and V decide, then we step away
from a single and defined physics into, e.g., the math world of itera-
tive linear inversion or model matching. How do we formulate a
multiple-removal algorithm concept in an iterative linear inverse or
model-matching scheme? How do we formulate a model-type inde-
pendent multiple-removal method from a full-waveform inversion,
or any indirect-inversion model-matching procedure? The latter
aims immediately to either improve or match the model properties
with the subsurface. From an inverse-scattering-series perspective,
the latter all-or-nothing strategy (1) misses the opportunity to
achieve other useful but less daunting tasks such as multiple removal
and depth imaging; and (2) begins at the first step straight into the
most challenging task of parameter estimation, with all the pitfalls of
insufficient model types and bandwidth sensitivities.

For the ISS, the decisions are not under our control or influence. It
has one physical reference model, the water, and a single unchanged
separation of the earth into a reference medium and a general pertur-
bation operator that can accommodate a very wide range of earth
model types. The model types need not be specified unless we want
the direct, nonlinear AVO subseries. The ISS provides a set of direct
equations to solve, with an analytic, unchanged inverse operation.

The physics-consistent direct-inverse formalism of the inverse
scattering series stands alone in predicting that we require all four

DSP Dss

linearly. Iterative linear ihversion tries to substitute a set of constant-
ly changed, forward problems with linear updates for a single, en-
tirely prescriptive, consistent, and explicit nonlinear physics. The
latter is the inverse scattering series; the former (iterative linear in-
version) has an attraction to linear inverses (and generalized invers-
es), which have no single physical theory and consistency. Linear in-
version and generalized inverse theory are part of standard graduate
training in geophysics; hence it is easy to understand trying to recast
the actual nonlinear problem into a set of iterative linear problems
where the tools are familiar. Model-matching schemes and iterative-
ly linear inversion are reasonable and sometimes useful but they are
more math than physics. Thus, they have no way to provide the
framework for inversion that equations 46 and 47 provide by staying
consistent with physics.

The practical, added value that direct ISS nonlinear inversion pro-
vides beyond linear inversion is described in Zhang (2006), and
Zhang and Weglein (2005, 2006, 2009a, and 2009b). There are cir-
cumstances in which very different target lithologies have very simi-
lar changes in mechanical properties. The added value is demon-
strated in 4D application in discriminating between pressure and flu-
id-saturation effects. That distinction results in the difference be-
tween a drill and a no-drill decision.

HPP [HPS . . .
components of the data g) D°’\ to even estimate elastic properties

DISCUSSION

Indirect inverse methods (e.g., model matching, cost-function
search engines, optimal stacking, full-waveform inversion, and iter-
ative linear inversion) at best seek to emulate or to satisfy some prop-
erty or quality of an inverse solution, rather than providing the solu-
tion directly. Here we communicate a message on the critical distinc-
tion that is often ignored between modeling and inversion, and the
even greater difference between direct-inverse solutions and indi-
rect methods that seek that same goal.

We describe the algorithmic and practical consequences of this in-
creased conceptual clarity. In particular, we examine the commonly
held view that considers PP reflection data (e.g., Stolt and Weglein,
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1985; Boyse and Keller, 1986) to be adequate for estimating changes
in mechanical properties, and that is used today in methods for both
linear and nonlinear estimates of mechanical property changes
across a reflector. We show, from the definitiveness of a direct-inver-
sion perspective, that PP data are fundamentally insufficient. The di-
rect inversion for those changes in mechanical properties provided
by the ISS communicates that all components of data (PP, PS, SS,...)
are required for either linear and/or nonlinear direct inversion. Lin-
ear inversion is defined here as the linear approximate solution to the
direct inverse problem. For indirect methods or methods with mod-
eling as a starting point, there is no reason to suspect or conclude that
PP data would be fundamentally and conceptually inadequate. Indi-
rect methods are neither equivalent to nor a substitute for direct
methods. We point out the general conceptual and algorithmic dif-
ferences.

The direct nonlinear solution given by the ISS provides the first
unambiguous and consistent meaning for a direct, approximate lin-
ear inverse solution. Inverting PP data linearly for approximate
changes in earth’s mechanical properties provides a linear approxi-
mate solution to the PP data equation, but not a linear approximate
inverse solution for changes in earth’s mechanical properties. To
achieve the higher bar of a linear approximate inverse solution re-
quires a nonapproximate inverse solution, as a starting point, as ei-
ther a closed form or expressed as a series that is going to be reduced
and simplified in a linear approximate form. The ISS represents a
nonapproximate fully nonlinear and direct inverse solution. The di-
rect inversion of earth’s mechanical properties requires PP, PS, and
SS data in a 2D world, and PP, PSv, PSh, SvSv, ShSh, and SvShin a
3D earth. Hence, the linear approximate inverse solution must be lin-
ear in the data that allow the linear solution to correspond to the lin-
ear approximation of the inverse solution. The PP data alone can pro-
duce an approximate solution to a forward PP equation, but PP, PS,
and SS can provide a linear approximate inverse solution.

Hence, the conclusion is that only multicomponent data can pro-
duce a linear approximate inversion solution, which is the first step
toward a complete nonlinear and direct solution.

We recognize that the changes in material properties across a sin-
gle reflector and the corresponding reflection coefficients and reflec-
tion data have a nonlinear relationship in a modeling and therefore
an inversion sense. However, the key point is that although changes
in earth’s mechanical properties at an interface can (through the
Zoeppritz relations) directly, nonlinearly, exactly, and separately de-
termine each of the PP, PS, and SS reflection coefficients, it requires
all of those reflection coefficients taken together to determine any
one or more changes in mechanical properties. That message is nei-
ther obvious nor reasonable, or even plausible. However, the mes-
sage here is that it is all of those difficult and unattractive things, and
yet it is also unambiguously and unmistakably true. In general, in-
version or processing is not modeling run backward.

Direct linear and indirect methods (e.g., full-waveform inversion)
have not and cannot bring that clarity to the meaning and unambigu-
ous prescription of the linear approximate inverse solution. Model
matching with global searches of PP data alone have no framework
or other reason to suspect the fundamental inadequacy of that PP
data to provide a linear inverse, let alone a nonlinear solution. We
have published using PP data to estimate changes in physical proper-
ties, and along with the entire petroleum industry, we have used PP
data in AVO analysis. The PP data have enough degrees of freedom,
given enough angles, to more than solve for linear estimates in
changes in earth’s material properties. So what is the problem?
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We are fully aware that a single angle of data cannot invert simul-
taneously for several changes in earth’s mechanical properties be-
cause the degrees of freedom in the data need to be the same as in the
sought-after earth’s material properties. This is recognized and un-
derstood in inverse theory. Sufficient degrees of freedom in your
data are a necessary but not a sufficient condition for a linear inverse
solution, although it is necessary and sufficient for solving a direct-
forward-PP relationship in an inverse sense. The fact that all compo-
nents of elastic data are absolutely baseline required to provide a
meaningful linear inverse or nonlinear inverse solution is a new,
clearer, and higher bar, and a much more subtle, but in no way less-
important message. The fact that the ISS is the only direct and non-
linear inversion method has allowed it to:

1) Stand alone and provide a framework for the very meaning of
linear inverse.

2)  Provide a systematic and precise way to improve upon those es-
timates directly through higher terms in the expansion of those
earth’s mechanical properties directly in terms of the data. The
required data are full multicomponent data and not only PP.

If we have an expansion for a change in a physical property (call it
V, in terms of reflection data D) then schematically, V(D) = V(D
=0)+ V' (D=0)D+ 5V(D=0)D>+:--, where V(D =0) =0,
V'(0)D is the linear estimate to V(D), and D are the data needed to
determine V(D). Only the ISS provides the precise series for V(D)
and, hence, in that process defines both the data necessary to find
V(D) and its linear estimate V;, = V’(0)D. We cannot change the ex-
pansion variable in a Taylor series. If the data D determine the series,
then each term including the first linear term depends on all elements
of D. The data D are multicomponent data for the determination of
changes in elastic properties. That is the point.

The need for multicomponent data does not add a set of con-
straints beyond PP data, but provides the necessary baseline data
needed to satisfy the fundamental nonlinear relationship between re-
flection data and changes in earth’s mechanical properties. It is a fun-
damental data need that stands with data dimensionality and degrees
of freedom. It comes in at the ground floor, before more subtle and
important issues of robustness and stability are examined — it is not
merely a practical enhancement or boost to PP-data inversion poten-
tial and capability. The need for multicomponent data is fundamen-
tal. As with other things, it can be ignored but rarely will be ignor-
able.

The latter PP data are fundamentally inadequate from a conceptu-
al and math-physics analysis perspective for a consistent and mean-
ingful target identification, and the needed data and methods for us-
ing that data are provided only by the directness and fully nonlinear
and prescriptive nature of the ISS. Those unique properties and ben-
efits of the ISS are not provided by either (1) linear approximate di-
rect-inverse methods, behind all current mainstream leading-edge
migration and migration-inversion algorithms, or (2) nonlinear indi-
rect inverse methods such as iterative linear or other indirect model-
matching inversion methods, or full-waveform inversion.

We have taken the reader through the thinking process and delib-
eration within our group that brought this issue to light. It began in
the simpler acoustic world, where the difference between the for-
ward and inverse problem needed some attention and clarification.
We have raised and answered the following questions:

1)  What does linear in the data mean?
2) Linear in what data? What are the actual data requirements
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needed to define a linear inverse as a linear approximation “in
data” to the solution of the direct nonlinear inverse problem?

3) Conservation of dimension (having enough degrees of freedom
in the data to ““solve” an equation) is not a sufficient condition to
define “what data,” and being able to solve an equation (in iso-
lation) is not the same as finding a physically meaningful solu-
tion or even a linear estimate.

4)  Solving an equation without the context and framework within
which that equation resides, and ignoring the assumptions that
lead to that equation, constitutes a dangerous and ill-considered
path.

5) What are the implications for data collection and target
identification?

In summary, (1) PP data are necessary and sufficient for a direct
inversion of an acoustic medium/target, and hence PP is necessary
and sufficient for a linear inversion for acoustic properties, but (2) all
components of data PP, PS, SS,... are necessary and sufficient for a
direct inversion of an elastic medium/target (provided explicitly in
Zhang, 2006, pp. 77). Hence all components are required for a linear
approximate inversion for elastic properties. The linear inverse is the
first and linear approximation of those parameters in a series that is a
nonlinear expansion in terms of data that, in principle, can determine
those properties directly.

Zhang (2006, p. 73-75) asks and answers this question, men-
tioned in item two in the list above: What is one to do for direct non-
linear AVO of an elastic medium/target when one measures only PP
data, as in typical towed-streamer marine data within the water col-
umn?

The response was to use the PP data in a forward-PP relationship
and solve that in a traditional manner with three (or more angles) for
three parameters, and then use two of those three parameters to syn-
thesize the required PS, SS... components necessary to compute di-
rect nonlinear inversion of the elastic properties, which is better than
putting zeros in places where the direct inversion expected PS, SS...
data. This is the same issue that Matson (2000) faces in the direct
elastic inverse scattering series for ocean-bottom and onshore-mul-
tiple removal. The need for multicomponent data arises as an abso-
lutely necessary requirement for a direct elastic inversion for AVO
purposes or for the direct removal of multiples when the measure-
ment surface is the ocean bottom or onshore (land) and requires an
elastic reference medium.

An important point here is that the synthesized PS, SS,...and the
actual PS, SS,... data never are equal (see Zhang, 2006, pp. 73-75,
for several examples). The inability to use PP data alone to produce
the same linear inversion as having PP, PS, and SS data is notewor-
thy. That inability would not be the case if a linear inverse of PP data
could produce the other data components, then inverting either PP
alone or PP, PS, and SS together would make no difference. It makes
a difference, and it supports the inverse-scattering-series message
that PP data is, in principle, inadequate to directly invert for changes
in the mechanical properties of the earth. This illustrates and high-
lights the distinction and message that our study conveys for AVO
applications. For imaging, the indirect methods such as common im-
age gather, CFP, CRS, and optimal moveout trajectory stacking
(“path integral”), all have surrogates and proxies for a velocity mod-
el, and yet sometimes portray the proxy as though it was somehow
beyond, above, or independent of velocity. In fact it is an attempt and
weak (necessary but not sufficient) substitute for, and admission that
velocity is what they seek, but the velocity is beyond their reach. All
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of these indirect methods believe that a direct depth imaging method
would require an accurate velocity. The only multi-D direct inver-
sion, the inverse scattering series, stands alone in its message that a
direct depth imaging method derives from the ISS without a velocity
model.

The role of direct and indirect methods

At this point, we feel it is important to mention that a clear and im-
portant role exists for indirect methods, which we recognize and ap-
preciate. Among authors who recognize the need for a judicious use
of direct and indirect methods are: Verschuur et al., 1992; Carvalho
and Weglein, 1994; Berkhout and Verschuur, 1995; Matson, 2000;
Abma et al., 2005; Weglein and Dragoset, 2005; Kaplan and In-
nanen, 2008. Indirect methods always are needed to complement
and fill the gap between our deterministic direct methods and the
complexity of the actual seismic experiment, the real subsurface,
and the realities and compromises of acquisition. Adaptive methods
are called upon, and useful, and the part of reality outside our mod-
eled physics needs serious attention as well. Treating the seismic in-
verse problem as entirely direct inversion, or (as more often is the
case) entirely indirect, does not recognize or benefit from the mix of
distinct issues they address, and from pooling their necessary
strengths for field data application. However, in some general and
overriding sense, overall scientific and practical progress is mea-
sured as the boundary between the two moves to bring more issues
within the sphere of physics, and addressable by direct deterministic
tools and away from the computational world of search engines (full
wavefield or otherwise) and error surfaces.

Finally, we note that the first and linear term of the elastic inverse
problem was influenced not only by the nonlinear term; in fact, it was
defined by that term. That data-requirement message, along with the
entire inverse-series apparatus, results from the observation that the
perturbed wavefield and the concomitant medium perturbation are
related nonlinearly. Honor and respect that fundamental nonlinear
relationship and a physics-driven set of direct, consistent, deliberate,
and purposeful inversion algorithms, and a clear platform and unam-
biguous framework (that explains earlier anecdotal experiences) are
the dividend and value.

CONCLUSION

A unique and unambiguous data-requirement message is sent
from the inverse scattering series for linear and nonlinear direct in-
version. Other methods and approaches look at the inverse problem,
e.g., either linear or beyond linear, but iterative linear or model-
matching indirect inversion methods, including so-called full-wave-
field inversion, never have and never will provide that clarity and
definition. Nothing other than a direct inversion ought to provide
confidence that we are solving the problem in which we are interest-
ed. The inverse scattering series defines the data and algorithms
needed to carry out direct nonlinear inversion. That is the starting
point for defining a linear inverse approximate solution. A linear in-
verse solution is a linear approximation to the inverse solution. A lin-
ear estimate of parameters determined using a relationship between
those parameters and any convenient data, typically from a forward
or modeling relationship, does not warrant being labeled a linear ap-
proximation to the inverse solution. That is the essential point. Lin-
ear should mean linear with respect to the data adequate to determine
the actual inverse solution.
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How do we know which data are adequate? Looking at modeling
equations is the wrong starting point for understanding inversion,
and the proof is that looking at modeling PP data as a starting point
seems reasonable and plausible, but it is fundamentally wrong for
looking at the starting point and guide for the inverse solution and
linear inverse estimates therein. The inverse problem is not the for-
ward problem run backward. Legitimate inverse solutions do not be-
gin with taking a forward solution and trying to solve that relation-
ship in an inverse sense for changes in medium properties that occur
in the forward relationship. This is the crux of the logical flaw in all
current AVO, full-waveform inversion, and indirect methods. Itis an
essential point for clear understanding of the foundation behind our
processing algorithms and for the design and effective use of target
identification and parameter estimation methods.

Modeling and forward predicting, and creating multiples by any
modeling method, (e.g., finite difference or the forward scattering
series) require precise and detailed subsurface information about ev-
erything in the subsurface the multiple has experienced. However,
the inverse scattering series has distinct subseries for removing free-
surface and internal multiples that provide algorithms which require
absolutely no subsurface information, and are the same algorithms
for acoustic, elastic, anisotropic, and anelastic media. Not one line of
code changes if the earth is acoustic, elastic, anisotropic, or anelas-
tic. That is amazing, and it points out very clearly the flaw in thinking
of inversion as starting with a modeling idea or formula and then
treating inversion as a form of model matching, or forward modeling
run backward. How could one even imagine model matching and
subtracting multiples independent of the type of earth one is adopt-
ing and modeling?

Arecent and dominant trend in many fields of inversion, including
seismic inversion, is to ignore the two kinds of inversion, direct and
indirect, and even go so far as to define inversion as indirect model
matching, or “full-waveform” with a big computer. This study
shows certain pitfalls and serious dangers of using indirect methods.
Itprovides anecessary and timely reminder of the two types of inver-
sion and the unique strengths, clarity, guidance, and understanding
that direct inversion represents.

We can model match D, or iteratively invert D, until the cows
come home (i.e., ad infinitum), and we will find ambiguities and res-
olution challenges. When those methods use more components of
data, they sometimes produce less ambiguity and better resolution,
but from, e.g., a model-matching or full-waveform-inversion per-
spective, one never guesses why. The iterative linear inverse of PP
data is nonlinear in PP data, but it is not a nonlinear direct inverse so-
lution because it does not recognize that all components PP, PS,
SS,... are needed and hence has no chance of agreeing with the direct
nonlinear inverse provided only by the inverse series.

In a separate issue, the minimally realistic earth model for ampli-
tude analysis is an elastic medium that generates elastic wavefield
data and is characterized by elastic reflection coefficients. It is an is-
sue of serious conceptual and practical concern to use an acoustic in-
verse, especially when using amplitude analysis, for synthetic or
field data generated by an elastic medium. Much of current inversion
practice and methodology uses the wrong data, an unrealistic earth-
model type, and algorithms mislabeled as inversion.

We have presented a new and previously unrecognized and unher-
alded benefit of the fully nonlinear and direct multidimensional in-
version represented by the ISS. That new contribution is at the core
of all inversion theory. It impacts how we better understand previ-
ously observed and reported results from different groups and re-
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searchers, and it provides a firm, unambiguous platform and guide to
researchers and explorationists. It allows us to understand, for the
very first time, the data collection mandated and required for a mean-
ingful and consistent linear approximate inverse solution. In addi-
tion, it gives us a direct prescription and determination of the linear
estimate and a framework and systematic methodology for nonlin-
ear target identification.
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